Multistep direct preequilibrium reactions and the Monte Carlo approach
نویسندگان
چکیده
We provide an overview of recent developments to the Hybrid Monte Carlo Simulation (HMS) model for calculating preequilibrium reactions. Illustrative examples are shown for nucleon and cluster induced reactions, and for assessing the importance of multiple preequilibrium processes. We present new results using HMS theory to study heavy nuclide recoil velocities, which are important in applications such as radiation heating, damage and single-event-upsets, and also discuss GNASH and TALYS code recoil predictions. We also discuss approaches for performing center-of-mass to laboratory kinematic transformations for the light-ejectile particles – we emphasize that correctly following the kinematics of sequentially decaying nuclei leads to results that can be quite different from those obtained using the traditional 2-body assumption for the recoil boost velocity. We also discuss how angular momentum transfer effects can be included semiclassically in the HMS model, allowing HMS to be linked to a Hauser-Feshbach code to study spin-dependent observables (such as gamma-ray, and isomer production).
منابع مشابه
A New Approach for Monte Carlo Simulation of RAFT Polymerization
In this work, based on experimental observations and exact theoretical predictions, the kinetic scheme of RAFT polymerization is extended to a wider range of reactions such as irreversible intermediate radical terminations and reversible transfer reactions. The reactions which have been labeled as kinetic scheme are the more probable existing reactions as the theoretical point of view. The ...
متن کاملKinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts
Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...
متن کاملDevelopment of an Efficient Particle Approach for Micro-scale Gas Flow Simulations
The micro-scale gas flows are usually low-speed flows and exhibit rarefied gas effects. It is challenging to simulate these flows because traditional CFD method is unable to capture the rarefied gas effects and the direct simulation Monte Carlo (DSMC) method is very inefficient for low-speed flows. In this study we combine two techniques to improve the efficiency of the DSMC method. The informa...
متن کاملEvaluating How the Islamic Republic of Iran Achieved its Vision Economic Goals by Designing and Computing a Composite Index and Using Monte Carlo Simulation Approach for Uncertainty Analysis
The Islamic Republic of Iran Vision aimed to direct development plans and yearly budgets. As one of the most important part, it includes 13 economic goals for directing economic route of the country for a twenty years period. After 15 years, evaluating how the country achieved to these goals is very important and unfortunately neglected. In this article, considering the different nature of goal...
متن کاملOptimal Scheduling of Battery Energy Storage System in Distribution Network Considering Uncertainties using hybrid Monte Carlo- Genetic Approach
This paper proposes a novel hybrid Monte Carlo simulation-genetic approach (MCS-GA) for optimal operation of a distribution network considering renewable energy generation systems (REGSs) and battery energy storage systems (BESSs). The aim of this paper is to design an optimal charging /discharging scheduling of BESSs so that the total daily profit of distribution company (Disco) can be maximiz...
متن کامل